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Part A. Capital cost methods escalation 

There are two ways to actualise a cost into a US cost: either convert at the reference year exchange rate and update with 

a US plant cost index or update with the reference country plant cost index and convert at 2011 exchange rate [1]. 

The constant kT in Taylor’s method is expressed in (£, 1977) using the UK Engineering and Process Economics 

index (EPE = 280, 1977). This index was published monthly in the homonymous journal from 1970 (base= 100) until 

1979[2]. Taylor, however, states that the constant can be updated using any other UK index. Bridgwater incorporates the 

UK PREDICT Plant Cost Index, which is published monthly in Process Engineering. This index, first appeared in 1973 

and is rebased every five years. Values for this index were found from several sources and are carefully rebased in 2005, 

as shown in Fig. S1[3]. The 1970’s was a period of extreme inflation in the UK and thus, a significant error in calculations 

is expected if UK indices of this period are used.  

Therefore, in this study, the costs are converted to US$ and plants are relocated in the US using appropriate 

factors for the reference year and then, an appropriate US plant cost index is used to escalate the costs. This necessity 

justifies the choice of such a location and currency for the needs of this comparative study. The Chemical Engineering 

Plant Cost Index (CEPCI) (base= 1958-59) is used to escalate the aforementioned correlations, as well as the constant 

kk in Klumpar et al.’s method, while it is also used to update Petley’s correlation[4]. Bridgwater’s equation (5) employs the 

Engineering News Record (ENR) index which is being issued in the ENR magazine since 1908 (base= 1913)[5] . 

Furthermore, suitable relocation factors were used wherever required and were derived from publications by Bridgwater, 

Gerrard[3a, 6] and Compass International[7]. It should be noted that from 1972 until circa 1980 the UK plant costs were 90-

97% of US plant costs[2b]. 

 

 

Figure. S1. Plant Cost Indices for the Chemical Industry 

 

Taking into account the previous limitations and selecting the appropriate indices, the correlations under study 

were modified as follows: 

 

Wilson  

𝐼𝑆𝐵𝐿 = 𝑓𝐼 ∙ 𝑁 ∙ (𝐴𝑈𝐶) ∙ 𝐹𝑚 ∙ 𝐹𝑃 ∙ 𝐹𝑇   , in £, 1971, UK                                                                            Eq. (S.1) 

CEPCI (1971) =132.3, CEPCI (2011) = 585.7 

1£=2.43$ (1971) 

Location factor (UK) = 0.77 (base=US, 1971) 

ISBL = 13.97 ∙ 10−6 ∙ 𝑓𝐼 ∙ N ∙ (AUC) ∙ 𝐹𝑚 ∙ 𝐹𝑝 ∙ 𝐹𝑇, in M$, 2011, US                                                                                Eq. (S.2) 

 



Taylor 

ISBL = 0.042 ∙ ∑ (1.3)SN
1 ∙ Q0.39, in M£, 1977, UK                                                                                                        Eq. (S.3) 

CEPCI (1977) = 204.1, CEPCI (2011) =585.7 

1£=1.74$ (1977) 

Location factor (UK) = 0.9 (base=US, 1977) 

ISBL = 0.233 ∙ ∑ (1.3)𝑆𝑁
1 ∙ 𝑄0.39, in M$, 2011, US                                                                                                        Eq. (S.4) 

Bridgwater (A) 

𝐺𝐶 = 50.26 ∙ 𝑁 ∙ (
𝑄

𝑠0.5
)0.85 ∙ (

𝑇∙𝑛

𝑁
)−0.17 ∙ (

𝑃∙𝑛′

𝑁
)0.14 𝐸𝑁𝑅

1300
 , Grassroots cost in £, UK,                                                            Eq. (S.5) 

ENR=9096.82 (2011), ISBL=75% of Grassroots Cost 

1£=1.8$ (1976) 

Location factor (UK) =0.97 (base=US, 1976) 

𝐼𝑆𝐵𝐿 = 489 ∙ 10−6 ∙ 𝑁 ∙ (
𝑄

0.5
)0.85 ∙ (

𝑇∙𝑛

𝑁
)−0.17 ∙ (

𝑃∙𝑛′

𝑁
)0.14 , ISBL in M$, 2011, US,                                                              Eq. (S.6) 

Bridgwater (B) 

𝐼𝑆𝐵𝐿 = 158 ∙ 𝑁 ∙ (
𝑄

𝑠
)0.675 ∙

𝑃𝐸𝐼(𝑈𝐾)

100
,

𝑄

𝑠
> 60000𝑡𝑛/𝑦𝑟  , in £, UK                                                                                    Eq. (S.7) 

𝐼𝑆𝐵𝐿 = 13850 ∙ 𝑁 ∙ (
𝑄

𝑠
)0.3 ∙

𝑃𝐸𝐼(𝑈𝐾)

100
,

𝑄

𝑠
< 60000𝑡𝑛/𝑦𝑟, in £, UK                                                                                    Eq. (S.8) 

PEI (1975) = 100. Therefore: 

CEPCI (1975) = 182.4, CEPCI (2011)= 585.7 

1£=2.21$ (1975) 

Location factor (UK) =0.95 (base=US, 1975) 

𝐼𝑆𝐵𝐿 = 0.001 ∙ 𝑁 ∙ (
𝑄

𝑠
)

0.675

,
𝑄

𝑠
> 60000𝑡𝑛/𝑦𝑟 , in M$, 2011, US                                                                                  Eq. (S.9) 

𝐼𝑆𝐵𝐿 = 0.103 ∙ 𝑁 ∙ (
𝑄

𝑠
)

0.3

,
𝑄

𝑠
< 60000𝑡𝑛/𝑦𝑟 , in M$, 2011, US                                                                                  Eq. (S.10) 

Bridgwater (C) 

𝐼𝑆𝐵𝐿 = [401600 + 1.304 ∙ (
𝑄

𝑠
)] ∙ 𝑁 ∙ (

𝑃𝐸𝐼(𝑈𝐾)

100
) , in £, UK                                                                                           Eq. (S.11) 

PEI (1975) = 100. Therefore: 

CEPCI (1975) = 182.4, CEPCI (2011) =585.7 

1£=2.21$ (1975) 

Location factor (UK) = 0.95 (base=US, 1975) 

ISBL = [3 + 9.7 ∙ 10−6 ∙ (
𝑄

𝑠
)] ∙ 𝑁 , in M$, 2011, US                                                                                                   Eq. (S.12) 

Bridgwater (D) 

𝐼𝑆𝐵𝐿 = 193 ∙ 𝑁 ∙ [(
𝑄

𝑠
)0.665] ∙ [𝑒(2.58∙10−7𝑄)] ∙ [𝑇−0.022] ∙ [𝑃−0.064] ∙ [

𝑃𝐸𝐼(𝑈𝐾)

100
] , in £, UK                                                   Eq. (S.13) 

PEI (1975) = 100. Therefore: 

CEPCI (1975) = 182.4, CEPCI (2011) = 585.7 

1£=2.21$ (1975) 

Location factor (UK) =0.95 (base=US, 1975) 

ISBL = 1.44 ∙ 10−3 ∙ 𝑁 ∙ [(
𝑄

𝑠
)0.665] ∙ [𝑒(2.58∙10−7𝑄)] ∙ [𝑇−0.022] ∙ [𝑃−0.064], in M$, 2011, US                                           Eq. (S.14) 

Klumpar, Brown, Fromme (A) & (B) 

𝐼𝑆𝐵𝐿 = 180 ∙ 𝐹 ∙ 𝑁 ∙ 𝐺𝑒, e=0.57 or e=ν, in $, 1981 (US)                                                                                          Eq. (S.15) 

CEPCI (1981) =297, CEPCI (2011) =585.7 

ISBL = 3.55 ∙ 10−4 ∙ 𝐹 ∙ 𝑁 ∙ 𝐺𝑒 , in M$, 2011, US                                                                                                      Eq. (S.16) 

 

Petley 

𝐼𝑆𝐵𝐿 = 55882 ∙ 𝑄0.44 ∙ 𝑁0.486 ∙ 𝑇𝑚𝑎𝑥
0.038 ∙ 𝑃𝑚𝑎𝑥

−0.02 ∙ 𝐹𝑚
0.341, in $, 1988, West Germany                                                     Eq. (S.17) 

CEPCI (1988) = 342.5, CEPCI (2011) = 585.7 



Location factor (Germany) = 1.03 (base=US, 2011)  

ISBL = 0.093 ∙ 𝑄0.44 ∙ 𝑁0.486 ∙ 𝑇𝑚𝑎𝑥
0.038 ∙ 𝑃𝑚𝑎𝑥

−0.02 ∙ 𝐹𝑚
0.341 in M$, 2011,US                                                                          Eq. (S.18) 

Lange 

𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 = 3.0 × (𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠𝑒𝑠 [𝑀𝑊])0.84, in M$, 1993, US                                                                            Eq. (S.19) 

CEPCI (1993) = 359.2, CEPCI (2011) = 585.7 

𝐷𝑖𝑟𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 = 4.9 × (𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠𝑒𝑠 [𝑀𝑊])0.84, in M$, 2011, US                                                                            Eq. (S.20) 

𝐼𝑆𝐵𝐿 = 2.9 × (𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[𝑀𝑊])0.55, in M$, 1993, US                                                                                   Eq. (S.21) 

CEPCI (1993) = 359.2, CEPCI (2011)= 585.7 

𝐼𝑆𝐵𝐿 = 4.7 × (𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[𝑀𝑊])0.55, in M$, 2011, US                                                                                   Eq. (S.22) 

 

Table S1. Updated cost estimation methods 

Author Correlation Accuracy 

(as reported) 

Wilson ISBL = 13.97 ∙ 10−6 ∙ 𝑓𝐼 ∙ N ∙ (AUC) ∙ 𝐹𝑚 ∙ 𝐹𝑝 ∙ 𝐹𝑇 -30/+50% 

Taylor 
ISBL = 0.233 ∙ ∑(1.3)𝑆

𝑁

1

∙ 𝑄0.39 
±30% 

Bridgwater (A) 
𝐼𝑆𝐵𝐿 = 489 ∙ 10−6 ∙ 𝑁 ∙ (

𝑄

𝑠0.5)0.85 ∙ (
𝑇 ∙ 𝑛

𝑁
)−0.17 ∙ (

𝑃 ∙ 𝑛′

𝑁
)0.14 

±25% 

Bridgwater (B) 
𝐼𝑆𝐵𝐿 = 0.001 ∙ 𝑁 ∙ (

𝑄

𝑠
)

0.675

,
𝑄

𝑠
> 60000𝑡𝑛/𝑦𝑟 

𝐼𝑆𝐵𝐿 = 0.103 ∙ 𝑁 ∙ (
𝑄

𝑠
)

0.3

,
𝑄

𝑠
< 60000𝑡𝑛/𝑦𝑟 

±20% 

Bridgwater (C) 
ISBL = [3 + 9.7 ∙ 10−6 ∙ (

𝑄

𝑠
)] ∙ 𝑁 

±20% 

Bridgwater (D) 
ISBL = 1.44 ∙ 10−3 ∙ 𝑁 ∙ [(

𝑄

𝑠
)0.665] ∙ [𝑒(2.58∙10−7𝑄)] ∙ [𝑇−0.022] ∙ [𝑃−0.064] 

±20% 

Klumpar, Brown, Fromme (A) ISBL = 3.55 ∙ 10−4 ∙ 𝐹 ∙ 𝑁 ∙ 𝑄0.57 ±30% 

Klumpar, Brown, Fromme (B) ISBL = 3.55 ∙ 10−4 ∙ 𝐹 ∙ 𝑁 ∙ 𝑄𝜈 ±30% 

Petley ISBL = 0.093 ∙ 𝑄0.44 ∙ 𝑁0.486 ∙ 𝑇𝑚𝑎𝑥
0.038 ∙ 𝑃𝑚𝑎𝑥

−0.02 ∙ 𝐹𝑚
0.341 Ν.Α. 

Lange 𝐼𝑆𝐵𝐿 = 4.7 × (𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟[𝑀𝑊])0.55 N.A. 

Lange 𝐷𝐶𝐶 = 4.9 × (𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠𝑒𝑠 [𝑀𝑊])0.84 N.A. 

 

Part B. Biorefinery processes description & flowsheets 

Ethanol production by dry corn milling 

Corn is received, cleaned from foreign materials, ground in hammer mills and sent onto the hoppers. The ground 

corn is first, mixed with α-amylase, ammonia and lime and then, hydrolysed into polysaccharides via steam injection for 

1 hr at 88 oC. The output from the liquefaction is combined with a recycle stream from DDGS production and cooked for 

15 min at 110 oC, before being fed to the saccharification reactors for the final conversion of the dextrins into glucose (5 

hrs, 61 oC). The glucose is fed to six fermenters, which operate at batch mode (68 hrs) and at 32 oC. CO2 emitted from 

the fermenters is sent to a scrubber for recovery. Beer from the fermentation is first heated to flash off the vapor and then 

is fed to the beer column (along with the condensed vapors), where water is removed from the bottom. 99 % of the ethanol 

is recovered as a distillate from the rectifier, while the stripping column removes the remaining water and the rest of the 

mixed ethanol is recycled back to the rectifier.  The recovered ethanol is driven into the molecular sieves for final 

purification. The non-fermented material from the beer column’s bottom is fed to the whole stillage tank and then water is 

removed by centrifugation to produce wet distillers grains and a thin stillage. The thin stillage is further dried in a four-

effect evaporator, before being mixed with a part of the wet distillers grains and sent to a rotary drum dryer to produce the 

Dried Distillers Grains[8]. 

 

 

 



 

Figure. S2. Ethanol production by corn dry milling SuperPro® flowsheet (with permission from Intelligen, Inc) 

 

Biodiesel production by soyoil transesterification  

Methanol is combined with soyoil triglycerides and sodium methoxide into the first steam jacketed agitated 

reactors, where transesterification takes place for 1 hr at 60 oC, followed by a centrifugation step to remove the produced 

glycerol. The upper-rich fatty acid methyl esters phase is fed to a second transesterification reactor to complete the 

reaction, while a second centrifuge separates the esters from the glycerol.  The methyl esters are then washed with water 

to remove soaps and then centrifuged to remove the aqueous phase and finally, they are sent to a dryer for the final water 

removal. The glycerol-rich phases are sent to the glycerol purification stage, where they are washed with HCl to transform 

soaps into fatty acids. The fatty acids are centrifuged and sent to waste. The remaining glycerol phase is neutralised with 

sodium hydroxide and sent to the methanol recovery column. The remaining water is removed by distillation to produce 

80 % w/w glycerol product[9]. 

 

 

Figure. S3. Biodiesel production by soyoil transesterification SuperPro® flowsheet (with permission from Intelligen, Inc.) 

 

 

 

 



Ethanol production by indirectly-heated biomass gasification 

The process was modelled using Aspen Plus, the only commercially available software capable of handling 

sorbent solid components, to handle the rigorous material and energy balances. The NREL’s design for the Batelle 

Columbus Indirectly Heated Gasifier is taken as a base case. Pine chips of appropriate size (<75 mm) and moisture 

content 15 % enter the Gasifier (RYield, 870 oC, 1.6 bara) which is of a dual fluidized bed design. Heat for the endothermic 

gasification reactions is supplied by circulating hot olivine sand between the Gasifier vessel and the char combustor 

(RStoic). The gasification medium is steam and the temperature of the boiler is 982 oC. The majority of the olivine and 

char (99.9 % of both) is separated in the primary Gasifier cyclone and sent to the char combustor. A secondary cyclone 

removes 90 % of any residual fines. The char that is formed in the Gasifier is burned in the combustor to reheat the olivine. 

The primary combustor cyclone separates the olivine (99.9 %) from the combustion gases and the olivine is sent back to 

the Gasifier. Ash and any sand particles that are carried over are removed in the secondary combustor cyclone (99.9 % 

separation) followed by an electrostatic precipitator which removes the remaining residual amount of solid particles. The 

sand and ash mixture is diluted with water and discarded as waste. After immediate cooling of the produced gas at a 

temperature of 148 oC and at a point where the gas remains above its dew point, a filter is used to remove ash from the 

gas stream. Any condensate is removed, and the gas is then scrubbed (RadFrac) with water to remove HCl, along with 

most of the residual ammonia content and any residual particulate material. The product gas still contains H2S. 

After the syngas is properly conditioned, it passes into the fermenter. The fermenter (RStoic) operates at 3 bar 

and 37 oC, and contains bacteria (C. Ljundahlii) which convert part of the CO and H2 into ethanol, producing CO2 and 

consuming water. Unconverted gas which passes out of the fermenter is cooled and chilled to maximize recovery of 

ethanol. The gas is then scrubbed by a counter-current flow of water, recycled from the distillation area. Liquor from the 

fermenter, which contains 3 % w/w ethanol and 10 g/l of biomass, is pumped through the membrane unit. The membrane 

permeate passes to the distillation area, and the thickened retentate returns to the fermenter, first passing through a 

cooler to remove the heat generated by the ethanol formation and thereby control the fermenter operating temperature. 

The fermentation liquor from the membrane separator is heated to 100 oC and passes into the first distillation column 

which operates at 1.9 bar (Stripping column-RadFrac). The column removes CO2 and removes about 92 % of the water 

as a bottoms product. The gases are vented to the atmosphere from the top of the column. The ethanol is withdrawn from 

the column as a vapour side stream. The column bottoms water contains ethanol and is recycled to the fermenter. The 

vapour stream passes to the rectifier (RadFrac) to produce 92.5 % w/w ethanol which is withdrawn from the column top 

as vapour at 116 oC. The rectifier bottoms stream still contains ethanol and is cooled and passes to the gas scrubber, 

before returning to the fermenter. There is a small make-up of water to the top of the scrubber. The ethanol vapour stream 

from the rectifier passes to the ethanol dehydration unit. Molecular sieve dryers are used to remove the remaining water 

to produce anhydrous ethanol. The dried ethanol vapour is condensed and pumped off to storage. The water/ethanol 

vapour stream is condensed in a vacuum set.  

For the gasification part, the system thermodynamics are modelled using the RKS-BM (Redlich Kwong Soave 

with Boston Matthias alpha function) –which is widely used in coal treatment processes, while for the syngas fermentation, 

NRTL provided for accurate results[10]. 

 

 

 

 

Figure. S4. Ethanol production by indirectly-heated biomass gasification AspenPlus® flowsheet[10a] 

 

 

 

 



Part C. Probabilistic comparison with commercial capital costs: Corn-to-Ethanol and Soyoil Biodiesel at 200 kt/yr 

 

 The biochemical ethanol and soyoil biodiesel processes are upscaled to 200 kt/yr, which is close to the median 

commercial operating capacity. The upscaled SuperPro flowsheets were prepared and provided by Intelligen, Inc. Careful 

application of the cost methods on the validation processes provided the following figures: 

 

 
Figure. S5. Corn to Ethanol Biorefineries: Inside + Outside Battery limits cost (M$, 2011, US) vs plant capacity (kt/yr) 

 

 

 

 

 
 Figure. S6. Soyoil Biodiesel Biorefineries: Inside + Outside Battery limits cost (M$, 2011, US) vs plant capacity (kt/yr) 
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